login
Introduction
ABBA Lab
Contact us
Member
Professor
Student
Alumni
Research
3D Printing for hard tissue engineering
3D Printing for soft tissue engineering
Fabrication of porous scaffolds
Advanced surface modification
Publication
Journal
Patent
Board
News
Gallery
Lecture
Home
Login
Introduction
ABBA Lab
Contact us
Member
Professor
Student
Alumni
Research
3D Printing for hard tissue engineering
3D Printing for soft tissue engineering
Fabrication of porous scaffolds
Advanced surface modification
Publication
Journal
Patent
Board
News
Gallery
Lecture
ABBA Lab
Advanced Biomaterials for Biomedical Applications Lab
Publication
Introduction
Member
Research
Publication
Board
Journal
Journal
Patent
Journal 글답변
html
이름
*
비밀번호
*
Year of publication
*
선택하세요
2022
2021
2020
2019
2018
2017
2016
2015~
Title
*
Author
Publication date
Journal
Status
Vol
Page
웹에디터 시작
> > > The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. > >
웹 에디터 끝
링크 #1
링크 #2
파일 #1
파일 #2
자동등록방지
숫자음성듣기
새로고침
자동등록방지 숫자를 순서대로 입력하세요.
취소
상단으로