login
Introduction
ABBA Lab
Contact us
Member
Professor
Student
Alumni
Research
3D Printing for hard tissue engineering
3D Printing for soft tissue engineering
Fabrication of porous scaffolds
Advanced surface modification
Publication
Journal
Patent
Board
News
Gallery
Lecture
Home
Login
Introduction
ABBA Lab
Contact us
Member
Professor
Student
Alumni
Research
3D Printing for hard tissue engineering
3D Printing for soft tissue engineering
Fabrication of porous scaffolds
Advanced surface modification
Publication
Journal
Patent
Board
News
Gallery
Lecture
ABBA Lab
Advanced Biomaterials for Biomedical Applications Lab
Publication
Introduction
Member
Research
Publication
Board
Journal
Journal
Patent
Journal 글답변
html
이름
*
비밀번호
*
Year of publication
*
선택하세요
2022
2021
2020
2019
2018
2017
2016
2015~
Title
*
Author
Publication date
Journal
Status
Vol
Page
웹에디터 시작
> > > Biofabrication with various hydrogel systems allows the production of tissue or organ constructs in vitro to address various challenges in healthcare and medicine. In particular, photocrosslinkable hydrogels have great advantages such as excellent spatial and temporal selectivity and low processing cost and energy requirements. However, inefficient polymerization kinetics of commercialized photoinitiators upon exposure to UV-A radiation or visible light increase processing time, often compromising cell viability. In this study, we developed a hydrogel crosslinking system which exhibited efficient crosslinking properties and desired mechanical properties with high cell viability, through a dual-photoinitiator approach. Through the co-existence of Irgacure 2959 and VA-086, the overall crosslinking process was completed with a minimal UV dosage during a significantly reduced crosslinking time, producing mechanically robust hydrogel constructs, while most encapsulated cells within the hydrogel constructs remained viable. Moreover, we fabricated a large PEGDA hydrogel construct with a single microchannel as a proof of concept for hydrogels with vasculature to demonstrate the versatility of the system. Our dual-photoinitiator approach allowed the production of this photocrosslinkable hydrogel system with microchannels, significantly improving cell viability and processing efficiency, yet maintaining good mechanical stability. Taken together, we envision the concurrent use of photoinitiators, Irgacure 2959 and VA-086, opening potential avenues for the utilization of various photocrosslinkable hydrogel systems in perfusable large artificial tissue for in vivo and ex vivo applications with improved processing efficiency and cell viability. > >
웹 에디터 끝
링크 #1
링크 #2
파일 #1
파일 #2
자동등록방지
숫자음성듣기
새로고침
자동등록방지 숫자를 순서대로 입력하세요.
취소
상단으로