login
Introduction
ABBA Lab
Contact us
Member
Professor
Student
Alumni
Research
3D Printing for hard tissue engineering
3D Printing for soft tissue engineering
Fabrication of porous scaffolds
Advanced surface modification
Publication
Journal
Patent
Board
News
Gallery
Lecture
Home
Login
Introduction
ABBA Lab
Contact us
Member
Professor
Student
Alumni
Research
3D Printing for hard tissue engineering
3D Printing for soft tissue engineering
Fabrication of porous scaffolds
Advanced surface modification
Publication
Journal
Patent
Board
News
Gallery
Lecture
ABBA Lab
Advanced Biomaterials for Biomedical Applications Lab
Publication
Introduction
Member
Research
Publication
Board
Journal
Journal
Patent
Journal 글답변
html
이름
*
비밀번호
*
Year of publication
*
선택하세요
2022
2021
2020
2019
2018
2017
2016
2015~
Title
*
Author
Publication date
Journal
Status
Vol
Page
웹에디터 시작
> > > For hard tissue engineering applications, biodegradable composite scaffolds have been extensively investigated because of their satisfactory mechanical properties and biocompatibility. Recently, 3D printing processes have received substantial attention in the tissue engineering field because of their ability to be customized for tissues that have suffered different types of loss or damage for each patient. However, previous studies on material extrusion-based techniques lack flexibility in the filler loading amount and cannot fulfill requirements that aim to enhance mechanical properties and biocompatibility. Herein, we propose a biodegradable polymer-based composite scaffolds with high ceramic loadings fabricated using the binder jetting (BJ) technique conjugated with capillary rise infiltration. A calcium sulfate hemihydrate (CSH) scaffold was fabricated using BJ-based 3D printing. Thereafter, CSH was transformed into biphasic calcium phosphate (BCP) using hydrothermal treatment, followed by heat treatment. Melted polycaprolactone (PCL) was infiltrated in the resulting BCP scaffold. BCP was then completely dispersed in the PCL matrix, and the calculated PCL loading in the BCP matrix exceeded 40 vol%. The PCL/BCP composite scaffold demonstrated the highest compressive strength, moduli, and toughness with the fracture mode shifted from brittle to less brittle. Moreover, a stable PCL/BCP surface promotes initial cell responses and shows sufficient proliferation and differentiation of pre-osteoblast cells. > >
웹 에디터 끝
링크 #1
링크 #2
파일 #1
파일 #2
자동등록방지
숫자음성듣기
새로고침
자동등록방지 숫자를 순서대로 입력하세요.
취소
상단으로