login
Introduction
ABBA Lab
Contact us
Member
Professor
Student
Alumni
Research
3D Printing for hard tissue engineering
3D Printing for soft tissue engineering
Fabrication of porous scaffolds
Advanced surface modification
Publication
Journal
Patent
Board
News
Gallery
Lecture
Home
Login
Introduction
ABBA Lab
Contact us
Member
Professor
Student
Alumni
Research
3D Printing for hard tissue engineering
3D Printing for soft tissue engineering
Fabrication of porous scaffolds
Advanced surface modification
Publication
Journal
Patent
Board
News
Gallery
Lecture
ABBA Lab
Advanced Biomaterials for Biomedical Applications Lab
Publication
Introduction
Member
Research
Publication
Board
Journal
Journal
Patent
Journal 글답변
html
이름
*
비밀번호
*
Year of publication
*
선택하세요
2022
2021
2020
2019
2018
2017
2016
2015~
Title
*
Author
Publication date
Journal
Status
Vol
Page
웹에디터 시작
> > > As biocompatible metallic materials, titanium and its alloys have been widely used in the orthopedic field due to their superior strength, low density, and ease of processing. However, further improvement in biological response is still required for rapid osseointegration. Here, various Ti surface-treatment technologies were applied: hydroxyapatite blasting, sand blasting and acid etching, anodic oxidation, and micro-arc oxidation. The surface characteristics of specimens subjected to these techniques were analyzed in terms of structure, elemental composition, and wettability. The adhesion strength of the coating layer was also assessed for the coated specimens. Biocompatibility was compared via tests of in vitro attachment and proliferation of pre-osteoblast cells. > >
웹 에디터 끝
링크 #1
링크 #2
파일 #1
파일 #2
자동등록방지
숫자음성듣기
새로고침
자동등록방지 숫자를 순서대로 입력하세요.
취소
상단으로